Capacitors are simple passive device that can store an electrical charge on their plates when connected to a voltage source.
The capacitor is a component which has the ability or “capacity” to store energy in the form of an electrical charge producing a potential difference (Static Voltage) across its plates, much like a small rechargeable battery.
There are many different kinds of capacitors available from very small capacitor beads used in resonance circuits to large power factor correction capacitors, but they all do the same thing, they store charge.
In its basic form, a capacitor consists of two or more parallel conductive (metal) plates which are not connected or touching each other, but are electrically separated either by air or by some form of a good insulating material such as waxed paper, mica, ceramic, plastic or some form of a liquid gel as used in electrolytic capacitors. The insulating layer between a capacitors plates is commonly called the Dielectric.
Due to this insulating layer, DC current can not flow through the capacitor as it blocks it allowing instead a voltage to be present across the plates in the form of an electrical charge.
The conductive metal plates of a capacitor can be either square, circular or rectangular, or they can be of a cylindrical or spherical shape with the general shape, size and construction of a parallel plate capacitor depending on its application and voltage rating.
When used in a direct current or DC circuit, a capacitor charges up to its supply voltage but blocks the flow of current through it because the dielectric of a capacitor is non-conductive and basically an insulator. However, when a capacitor is connected to an alternating current or AC circuit, the flow of the current appears to pass straight through the capacitor with little or no resistance.
There are two types of electrical charge, the positive charge in the form of Protons and negative charge in the form of Electrons. When a DC voltage is placed across a capacitor, the positive (+ve) charge quickly accumulates on one plate while a corresponding and opposite negative (-ve) charge
Then the plates remain charge neutral and a potential difference due to this charge is established between the two plates. Once the capacitor reaches its steady state condition an electrical current is unable to flow through the capacitor itself and around the circuit due to the insulating properties of the dielectric used to separate the plates.
The flow of electrons onto the plates is known as the capacitors Charging Current which continues to flow until the voltage across both plates (and hence the capacitor) is equal to the applied voltage Vc. At this point the capacitor is said to be “fully charged” with electrons.
The strength or rate of this charging current is at its maximum value when the plates are fully discharged (initial condition) and slowly reduces in value to zero as the plates charge up to a potential difference across the capacitors plates equal to the source voltage.
The amount of potential difference present across the capacitor depends upon how much charge was deposited onto the plates by the work being done by the source voltage and also by how much capacitance the capacitor has and this is illustrated below.
The parallel plate capacitor is the simplest form of capacitor. It can be constructed using two metal or metallised foil plates at a distance parallel to each other, with its capacitance value in Farads, being fixed by the surface area of the conductive plates and the distance of separation between them. Altering any two of these values alters the the value of its capacitance and this forms the basis of operation of the variable capacitors.
Also, because capacitors store the energy of the electrons in the form of an electrical charge on the plates the larger the plates and/or smaller their separation the greater will be the charge that the capacitor holds for any given voltage across its plates. In other words, larger plates, smaller distance, more capacitance.
By applying a voltage to a capacitor and measuring the charge on the plates, the ratio of the charge Q to the voltage V will give the capacitance value of the capacitor and is therefore given as: C = Q/V this equation can also be re-arranged to give the familiar formula for the quantity of charge on the plates as: Q = C x V
Although we have said that the charge is stored on the plates of a capacitor, it is more exact to say that the energy within the charge is stored in an “electrostatic field” between the two plates. When an electric current flows into the capacitor, it charges up, so the electrostatic field becomes much stronger as it stores more energy between the plates.
Likewise, as the current flowing out of the capacitor, discharging it, the potential difference between the two plates decreases and the electrostatic field decreases as the energy moves out of the plates.
The property of a capacitor to store charge on its plates in the form of an electrostatic field is called the Capacitance of the capacitor. Not only that, but capacitance is also the property of a capacitor which resists the change of voltage across it.
The Capacitance of a Capacitor
Capacitance is the electrical property of a capacitor and is the measure of a capacitors ability to store an electrical charge onto its two plates with the unit of capacitance being the Farad (abbreviated to F) named after the British physicist Michael Faraday.
Capacitance is defined as being that a capacitor has the capacitance of One Farad when a charge of One Coulomb is stored on the plates by a voltage of One volt. Note that capacitance, C is always positive in value and has no negative units. However, the Farad is a very large unit of measurement to use on its own so sub-multiples of the Farad are generally used such as micro-farads, nano-farads and pico-farads, for example.
Standard Units of Capacitance
- Microfarad (μF) 1μF = 1/1,000,000 = 0.000001 = 10-6 F
- Nanofarad (nF) 1nF = 1/1,000,000,000 = 0.000000001 = 10-9 F
- Picofarad (pF) 1pF = 1/1,000,000,000,000 = 0.000000000001 = 10-12 F
Then using the information above we can construct a simple table to help us convert between pico-Farad (pF), to nano-Farad (nF), to micro-Farad (μF) and to Farads (F) as shown.
Capacitance of a Parallel Plate Capacitor
The capacitance of a parallel plate capacitor is proportional to the area, A in metres2 of the smallest of the two plates and inversely proportional to the distance or separation, d (i.e. the dielectric thickness) given in metres between these two conductive plates.
The generalised equation for the capacitance of a parallel plate capacitor is given as: C = ε(A/d) where ε represents the absolute permittivity of the dielectric material being used. The permittivity of a vacuum, εo also known as the “permittivity of free space” has the value of the constant 8.84 x 10-12 Farads per metre.
To make the maths a little easier, this dielectric constant of free space, εo, which can be written as: 1/(4π x 9×109), may also have the units of picofarads (pF) per metre as the constant giving: 8.84 for the value of free space. Note though that the resulting capacitance value will be in picofarads and not in farads.
Generally, the conductive plates of a capacitor are separated by some kind of insulating material or gel rather than a perfect vacuum. When calculating the capacitance of a capacitor, we can consider the permittivity of air, and especially of dry air, as being the same value as a vacuum as they are very close.
Capacitance Example No1
A capacitor is constructed from two conductive metal plates 30cm x 50cm which are spaced 6mm apart from each other, and uses dry air as its only dielectric material. Calculate the capacitance of the capacitor.
Then the value of the capacitor consisting of two plates separated by air is calculated as 221pF or 0.221nF
The Dielectric of a Capacitor
As well as the overall size of the conductive plates and their distance or spacing apart from each other, another factor which affects the overall capacitance of the device is the type of dielectric material being used. In other words the “Permittivity” (ε) of the dielectric.
The conductive plates of a capacitor are generally made of a metal foil or a metal film allowing for the flow of electrons and charge, but the dielectric material used is always an insulator. The various insulating materials used as the dielectric in a capacitor differ in their ability to block or pass an electrical charge.
This dielectric material can be made from a number of insulating materials or combinations of these materials with the most common types used being: air, paper, polyester, polypropylene, Mylar, ceramic, glass, oil, or a variety of other materials.
The factor by which the dielectric material, or insulator, increases the capacitance of the capacitor compared to air is known as the Dielectric Constant, k and a dielectric material with a high dielectric constant is a better insulator than a dielectric material with a lower dielectric constant. Dielectric constant is a dimensionless quantity since it is relative to free space.
The actual permittivity or “complex permittivity” of the dielectric material between the plates is then the product of the permittivity of free space (εo) and the relative permittivity (εr) of the material being used as the dielectric and is given as:
Complex Permittivity
In other words, if we take the permittivity of free space, εo as our base level and make it equal to one, when the vacuum of free space is replaced by some other type of insulating material, their permittivity of its dielectric is referenced to the base dielectric of free space giving a multiplication factor known as “relative permittivity”, εr. So the value of the complex permittivity, ε will always be equal to the relative permittivity times one.
Typical units of dielectric permittivity, ε or dielectric constant for common materials are: Pure Vacuum = 1.0000, Air = 1.0006, Paper = 2.5 to 3.5, Glass = 3 to 10, Mica = 5 to 7, Wood = 3 to 8 and Metal Oxide Powders = 6 to 20 etc. This then gives us a final equation for the capacitance of a capacitor as:
One method used to increase the overall capacitance of a capacitor while keeping its size small is to “interleave” more plates together within a single capacitor body. Instead of just one set of parallel plates, a capacitor can have many individual plates connected together thereby increasing the surface area, A of the plates.
For a standard parallel plate capacitor as shown above, the capacitor has two plates, labelled A and B. Therefore as the number of capacitor plates is two, we can say that n = 2, where “n” represents the number of plates.
Then our equation above for a single parallel plate capacitor should really be:
However, the capacitor may have two parallel plates but only one side of each plate is in contact with the dielectric in the middle as the other side of each plate forms the outside of the capacitor. If we take the two halves of the plates and join them together we effectively only have “one” whole plate in contact with the dielectric.
As for a single parallel plate capacitor, n – 1 = 2 – 1 which equals 1 as C = (εo*εr x 1 x A)/d is exactly the same as saying: C = (εo*εr*A)/d which is the standard equation above.
Now suppose we have a capacitor made up of 9 interleaved plates, then n = 9 as shown.
Multi-plate Capacitor
Now we have five plates connected to one lead (A) and four plates to the other lead (B). Then BOTH sides of the four plates connected to lead B are in contact with the dielectric, whereas only one side of each of the outer plates connected to A is in contact with the dielectric. Then as above, the useful surface area of each set of plates is only eight and its capacitance is therefore given as:
Modern capacitors can be classified according to the characteristics and properties of their insulating dielectric:
- Low Loss, High Stability such as Mica, Low-K Ceramic, Polystyrene.
- Medium Loss, Medium Stability such as Paper, Plastic Film, High-K Ceramic.
- Polarized Capacitors such as Electrolytic’s, Tantalum’s.
Voltage Rating of a Capacitor
All capacitors have a maximum voltage rating and when selecting a capacitor consideration must be given to the amount of voltage to be applied across the capacitor. The maximum amount of voltage that can be applied to the capacitor without damage to its dielectric material is generally given in the data sheets as: WV, (working voltage) or as WV DC, (DC working voltage).
If the voltage applied across the capacitor becomes too great, the dielectric will break down (known as electrical breakdown) and arcing will occur between the capacitor plates resulting in a short-circuit. The working voltage of the capacitor depends on the type of dielectric material being used and its thickness.
The DC working voltage of a capacitor is just that, the maximum DC voltage and NOT the maximum AC voltage as a capacitor with a DC voltage rating of 100 volts DC cannot be safely subjected to an alternating voltage of 100 volts. Since an alternating voltage that has an RMS value of 100 volts will have a peak value of over 141 volts! (√2 x 100).
Then a capacitor which is required to operate at 100 volts AC should have a working voltage of at least 200 volts. In practice, a capacitor should be selected so that its working voltage either DC or AC should be at least 50 percent greater than the highest effective voltage to be applied to it.
Another factor which affects the operation of a capacitor is Dielectric Leakage. Dielectric leakage occurs in a capacitor as the result of an unwanted leakage current which flows through the dielectric material.
Generally, it is assumed that the resistance of the dielectric is extremely high and a good insulator blocking the flow of DC current through the capacitor (as in a perfect capacitor) from one plate to the other.
However, if the dielectric material becomes damaged due excessive voltage or over temperature, the leakage current through the dielectric will become extremely high resulting in a rapid loss of charge on the plates and an overheating of the capacitor eventually resulting in premature failure of the capacitor. Then never use a capacitor in a circuit with higher voltages than the capacitor is rated for otherwise it may become hot and explode.
Introduction to Capacitors Summary
We have seen in this tutorial that the job of a capacitor is to store electrical charge onto its plates. The amount of electrical charge that a capacitor can store on its plates is known as its Capacitance value and depends upon three main factors.
- Surface Area – the surface area, A of the two conductive plates which make up the capacitor, the larger the area the greater the capacitance.
- Distance – the distance, d between the two plates, the smaller the distance the greater the capacitance.
- Dielectric Material – the type of material which separates the two plates called the “dielectric”, the higher the permittivity of the dielectric the greater the capacitance.
We have also seen that a capacitor consists of metal plates that do not touch each other but are separated by a material called a dielectric. The dielectric of a capacitor can be air, or even a vacuum but is generally a non-conducting insulating material, such as waxed paper, glass, mica different types of plastics etc. The dielectric provides the following advantages:
- The dielectric constant is the property of the dielectric material and varies from one material to another increasing the capacitance by a factor of k.
- The dielectric provides mechanical support between the two plates allowing the plates to be closer together without touching.
- Permittivity of the dielectric increases the capacitance.
- The dielectric increases the maximum operating voltage compared to air.
Capacitors can be used in many different applications and circuits such as blocking DC current while passing audio signals, pulses, or alternating current, or other time varying wave forms. This ability to block DC currents enables capacitors to be used to smooth the output voltages of power supplies, to remove unwanted spikes from signals that would otherwise tend to cause damage or false triggering of semiconductors or digital components.
Capacitors can also be used to adjust the frequency response of an audio circuit, or to couple together separate amplifier stages that must be protected from the transmission of DC current.
At DC a capacitor has infinite impedance (open -circuit), at very high frequencies a capacitor has zero impedance (short-circuit). All capacitors have a maximum working voltage rating, its WV DC so select a capacitor with a rating at least 50% more than the supply voltage.
There are a large variety of capacitor styles and types, each one having its own particular advantage, disadvantage and characteristics. To include all types would make this tutorial section very large so in the next tutorial about The Introduction to Capacitors I shall limit them to the most commonly used types.
Types of Capacitor
There is a large variety of different types of capacitor available in the market place and each one has its own set of characteristics and applications.
The types of capacitors available range from very small delicate trimming capacitors using in oscillator or radio circuits, up to large power metal-can type capacitors used in high voltage power correction and smoothing circuits.
The comparisons between the the different types of capacitor is generally made with regards to the dielectric used between the plates. Like resistors, there are also variable types of capacitors which allow us to vary their capacitance value for use in radio or “frequency tuning” type circuits.
Commercial types of capacitors are made from metallic foil interlaced with thin sheets of either paraffin-impregnated paper or Mylar as the dielectric material. Some capacitors look like tubes, this is because the metal foil plates are rolled up into a cylinder to form a small package with the insulating dielectric material sandwiched in between them.
Small capacitors are often constructed from ceramic materials and then dipped into an epoxy resin to seal them. Either way, capacitors play an important part in electronic circuits so here are a few of the more “common” types of capacitor available.
Dielectric Capacitor
Dielectric Capacitors are usually of the variable type were a continuous variation of capacitance is required for tuning transmitters, receivers and transistor radios. Variable dielectric capacitors are multi-plate air-spaced types that have a set of fixed plates (the stator vanes) and a set of movable plates (the rotor vanes) which move in between the fixed plates.
The position of the moving plates with respect to the fixed plates determines the overall capacitance value. The capacitance is generally at maximum when the two sets of plates are fully meshed together. High voltage type tuning capacitors have relatively large spacings or air-gaps between the plates with breakdown voltages reaching many thousands of volts.
Variable Capacitor Symbol
As well as the continuously variable types, preset type variable capacitors are also available called Trimmers. These are generally small devices that can be adjusted or “pre-set” to a particular capacitance value with the aid of a small screwdriver and are available in very small capacitance’s of 500pF or less and are non-polarized.
Film Capacitor Type
Film Capacitors are the most commonly available of all types of capacitors, consisting of a relatively large family of capacitors with the difference being in their dielectric properties. These include polyester (Mylar), polystyrene, polypropylene, polycarbonate, metalised paper, Teflon etc. Film type capacitors are available in capacitance ranges from as small as 5pF to as large as 100uF depending upon the actual type of capacitor and its voltage rating. Film capacitors also come in an assortment of shapes and case styles which include:
- Wrap & Fill (Oval & Round) – where the capacitor is wrapped in a tight plastic tape and have the ends filled with epoxy to seal them.
- Epoxy Case (Rectangular & Round) – where the capacitor is encased in a moulded plastic shell which is then filled with epoxy.
- Metal Hermetically Sealed (Rectangular & Round) – where the capacitor is encased in a metal tube or can and again sealed with epoxy.
with all the above case styles available in both Axial and Radial Leads.
Film Capacitors which use polystyrene, polycarbonate or Teflon as their dielectrics are sometimes called “Plastic capacitors”. The construction of plastic film capacitors is similar to that for paper film capacitors but use a plastic film instead of paper. The main advantage of plastic film capacitors compared to impregnated-paper types is that they operate well under conditions of high temperature, have smaller tolerances, a very long service life and high reliability. Examples of film capacitors are the rectangular metalised film and cylindrical film & foil types as shown below.
Radial Lead Type
Axial Lead Type
The film and foil types of capacitors are made from long thin strips of thin metal foil with the dielectric material sandwiched together which are wound into a tight roll and then sealed in paper or metal tubes.
These film types require a much thicker dielectric film to reduce the risk of tears or punctures in the film, and is therefore more suited to lower capacitance values and larger case sizes.
Metalised foil capacitors have the conductive film metalised sprayed directly onto each side of the dielectric which gives the capacitor self-healing properties and can therefore use much thinner dielectric films. This allows for higher capacitance values and smaller case sizes for a given capacitance. Film and foil capacitors are generally used for higher power and more precise applications.
Ceramic Capacitors
Ceramic Capacitors or Disc Capacitors as they are generally called, are made by coating two sides of a small porcelain or ceramic disc with silver and are then stacked together to make a capacitor. For very low capacitance values a single ceramic disc of about 3-6mm is used. Ceramic capacitors have a high dielectric constant (High-K) and are available so that relatively high capacitance’s can be obtained in a small physical size.
They exhibit large non-linear changes in capacitance against temperature and as a result are used as de-coupling or by-pass capacitors as they are also non-polarized devices. Ceramic capacitors have values ranging from a few picofarads to one or two microfarads, ( μF ) but their voltage ratings are generally quite low.
Ceramic types of capacitors generally have a 3-digit code printed onto their body to identify their capacitance value in pico-farads. Generally the first two digits indicate the capacitors value and the third digit indicates the number of zero’s to be added. For example, a ceramic disc capacitor with the markings 103 would indicate 10 and 3 zero’s in pico-farads which is equivalent to 10,000 pF or 10nF.
Likewise, the digits 104 would indicate 10 and 4 zero’s in pico-farads which is equivalent to 100,000 pF or 100nF and so on. So on the image of the ceramic capacitor above the numbers 154 indicate 15 and 4 zero’s in pico-farads which is equivalent to 150,000 pF or 150nF or 0.15μF. Letter codes are sometimes used to indicate their tolerance value such as: J = 5%, K = 10% or M = 20% etc.
Electrolytic Capacitors
Electrolytic Capacitors are generally used when very large capacitance values are required. Here instead of using a very thin metallic film layer for one of the electrodes, a semi-liquid electrolyte solution in the form of a jelly or paste is used which serves as the second electrode (usually the cathode).
The dielectric is a very thin layer of oxide which is grown electro-chemically in production with the thickness of the film being less than ten microns. This insulating layer is so thin that it is possible to make capacitors with a large value of capacitance for a small physical size as the distance between the plates, d is very small.
The majority of electrolytic types of capacitors are Polarised, that is the DC voltage applied to the capacitor terminals must be of the correct polarity, i.e. positive to the positive terminal and negative to the negative terminal as an incorrect polarisation will break down the insulating oxide layer and permanent damage may result.
All polarised electrolytic capacitors have their polarity clearly marked with a negative sign to indicate the negative terminal and this polarity must be followed.
Electrolytic Capacitors are generally used in DC power supply circuits due to their large capacitance’s and small size to help reduce the ripple voltage or for coupling and decoupling applications. One main disadvantage of electrolytic capacitors is their relatively low voltage rating and due to the polarisation of electrolytic capacitors, it follows then that they must not be used on AC supplies. Electrolytic’s generally come in two basic forms; Aluminium Electrolytic Capacitors and Tantalum Electrolytic Capacitors.
Electrolytic Capacitor
1. Aluminium Electrolytic Capacitors
There are basically two types of Aluminium Electrolytic Capacitor, the plain foil type and the etched foil type. The thickness of the aluminium oxide film and high breakdown voltage give these capacitors very high capacitance values for their size.
The foil plates of the capacitor are anodized with a DC current. This anodizing process sets up the polarity of the plate material and determines which side of the plate is positive and which side is negative.
The etched foil type differs from the plain foil type in that the aluminium oxide on the anode and cathode foils has been chemically etched to increase its surface area and permittivity. This gives a smaller sized capacitor than a plain foil type of equivalent value but has the disadvantage of not being able to withstand high DC currents compared to the plain type. Also their tolerance range is quite large at up to 20%. Typical values of capacitance for an aluminium electrolytic capacitor range from 1uF up to 47,000uF.
Etched foil electrolytic’s are best used in coupling, DC blocking and by-pass circuits while plain foil types are better suited as smoothing capacitors in power supplies. But aluminium electrolytic’s are “polarised” devices so reversing the applied voltage on the leads will cause the insulating layer within the capacitor to become destroyed along with the capacitor. However, the electrolyte used within the capacitor helps heal a damaged plate if the damage is small.
Since the electrolyte has the properties to self-heal a damaged plate, it also has the ability to re-anodize the foil plate. As the anodizing process can be reversed, the electrolyte has the ability to remove the oxide coating from the foil as would happen if the capacitor was connected with a reverse polarity. Since the electrolyte has the ability to conduct electricity, if the aluminium oxide layer was removed or destroyed, the capacitor would allow current to pass from one plate to the other destroying the capacitor, “so be aware”.
2. Tantalum Electrolytic Capacitors
Tantalum Electrolytic Capacitors and Tantalum Beads, are available in both wet (foil) and dry (solid) electrolytic types with the dry or solid tantalum being the most common. Solid tantalum capacitors use manganese dioxide as their second terminal and are physically smaller than the equivalent aluminium capacitors.
The dielectric properties of tantalum oxide is also much better than those of aluminium oxide giving a lower leakage currents and better capacitance stability which makes them suitable for use in blocking, by-passing, decoupling, filtering and timing applications.
Also, Tantalum Capacitors although polarised, can tolerate being connected to a reverse voltage much more easily than the aluminium types but are rated at much lower working voltages. Solid tantalum capacitors are usually used in circuits where the AC voltage is small compared to the DC voltage.
However, some tantalum capacitor types contain two capacitors in-one, connected negative-to-negative to form a “non-polarised” capacitor for use in low voltage AC circuits as a non-polarised device. Generally, the positive lead is identified on the capacitor body by a polarity mark, with the body of a tantalum bead capacitor being an oval geometrical shape. Typical values of capacitance range from 47nF to 470uF.
Aluminium & Tantalum Electrolytic Capacitor
Electrolytic’s are widely used capacitors due to their low cost and small size but there are three easy ways to destroy an electrolytic capacitor:
- Over-voltage – excessive voltage will cause current to leak through the dielectric resulting in a short circuit condition.
- Reversed Polarity – reverse voltage will cause self-destruction of the oxide layer and failure.
- Over Temperature – excessive heat dries out the electrolytic and shortens the life of an electrolytic capacitor.
In the next tutorial about Capacitors, we will look at some of the main characteristics to show that there is more to the Capacitor than just voltage and capacitance.